Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • Airbus selected by ESA to collect Martian samples

Space

Airbus selected by ESA to collect Martian samples

Airbus has been selected by the European Space Agency (ESA) as prime contractor for the Mars Sample Return’s Earth Return Orbiter (ERO) – the first ever spacecraft to bring samples back to Earth from Mars.

Above: Artistic impression of the Earth Return Orbiter (ERO) Mars Sample Return (MSR) which will reach Mars orbit, capture orbiting samples launched from the Red Planet and bring them back to Earth. Mars Sample Return (MSR) is a joint ESA-NASA campaign and the next step in the exploration of Mars. ERO and the Sample Fetch Rover (SFR) are the two main European elements of MSR, both are set to be designed and built by Airbus. A manipulating arm, referred to as the Sample Transfer Arm (STA), that will transfer the samples from the SFR to the Mars Ascent Vehicle (MAV), is the third European contribution to the MSR programme.
Copyright Airbus

Advertisement
ODU RT

Mars Sample Return (MSR) is a joint ESA-NASA campaign and the next step in the exploration of Mars. ERO and the Sample Fetch Rover (SFR) are the two main European elements of MSR, both are set to be designed and built by Airbus. A manipulating arm, referred to as the Sample Transfer Arm (STA), that will transfer the samples from the SFR to the Mars Ascent Vehicle (MAV), is the third European contribution to the MSR program. The value of the ERO contract is € 491 million.

The five year mission will see the spacecraft head to Mars, act as a communication relay with the surface missions, perform a rendezvous with the orbiting samples and bring them safely back to Earth. Prior to launch from the Mars surface onboard the MAV, the Martian samples will be stored in sample tubes and collected by the SFR, for which Airbus has already commenced the study phase.

For ERO, Airbus will use its autonomous rendezvous and docking expertise built up over decades of experience in optical navigation, using technologies from the successful ATV (Automated Transfer Vehicle) and recent developments from JUICE, Europe’s first mission to Jupiter.

“We’re bringing the full force of our experience gained on Rosetta, Mars Express, Venus Express, Gaia, ATV, BepiColombo, and JUICE to ensure this mission succeeds. Bringing samples back to Earth from Mars will be an extraordinary feat, taking interplanetary science to a new level and Airbus is excited to take on this challenge as part of this joint international mission. ” said Jean-Marc Nasr, Head of Airbus Space Systems.

To be launched on an Ariane 6 in 2026, the 6 ton, 6 m high spacecraft, equipped with 144m² solar arrays with a span of over 40 m – some of the biggest ever built – will take about a year to reach Mars. It will use a mass-efficient hybrid propulsion system combining electric propulsion for the cruise and spiral down phases and chemical propulsion for Mars orbit insertion. Upon arrival, it will provide communications coverage for the NASA Perseverance Rover and Sample Retrieval Lander (SRL) missions, two essential parts of the MSR Campaign.

For the second part of its mission, ERO will have to detect, rendezvous with, and capture a basketball-size object called the Orbiting Sample (OS), which houses the sample tubes collected by SFR; all this over 50 million km away from ground control. Once captured, the OS will be bio-sealed in a secondary containment system and placed inside the Earth Entry Vehicle (EEV), effectively a third containment system, to ensure that the precious samples reach the Earth’s surface intact for maximum scientific return. It will then take another year for ERO to make its way back to Earth, where it will send the EEV on a precision trajectory towards a pre-defined landing site, before itself entering into a stable orbit around the Sun.

Advertisement
Siemens rectangle

After landing, the samples will be transferred to a specialised handling facility where they will be quarantined. Once the sample tubes are opened, initial measurements will be taken to generate a detailed catalogue, enabling specific parts of the samples to then be targeted for specialist science investigations.

Airbus will have overall responsibility for the ERO mission, developing the spacecraft in Toulouse and conducting mission analysis in Stevenage.

Thales Alenia Space Turin will also have an important role, assembling the spacecraft, developing the communication system and providing the Orbit Insertion Module. The mission enabling RIT-2X ion engines will be provided by ArianeGroup.

 

Advertisement
General Atomics LB
Space projects to unlock climate and transport innovations

Space

Space projects to unlock climate and transport innovations

16 September 2025

Six innovative projects will use satellite technology and AI to transform how Britain tackles climate change, manages transport networks and supports accessible travel, following £1.5 million in UK Space Agency funding.

ADS reveals 2024 value of aerospace, defence, security and space to Scotland

Aerospace Defence Security Space

ADS reveals 2024 value of aerospace, defence, security and space to Scotland

11 September 2025

The aerospace, defence, security and space sectors added £3.7 billion to Scotland’s economy in 2024, according to new data from ADS, equating to a 55% increase between 2020 and 2024.

Andrew Stanniland appointed as Managing Director, MDA Space UK

Space

Andrew Stanniland appointed as Managing Director, MDA Space UK

10 September 2025

MDA Space Ltd. has appointed Andrew Stanniland as Managing Director, MDA Space UK, effective from today.

Filtronic secures record breaking SpaceX order

Space

Filtronic secures record breaking SpaceX order

9 September 2025

Sedgefield based designer and manufacturer of advanced RF and microwave solutions, Filtronic, has secured its largest ever contract - valued at £47.3 million ($62.5m) - with its long-standing customer, SpaceX, for the Starlink high-speed internet service.

Advertisement
Siemens rectangle
Oxford Space Systems and Lacuna Space deploy two helical antennas

Space

Oxford Space Systems and Lacuna Space deploy two helical antennas

5 September 2025

Oxford Space Systems and Lacuna Space have successfully deployed an additional two Oxford Space Systems helical antennas to add to Lacuna Space’s growing satellite Internet of Things (IoT) constellation.

Boeing X-37B Spaceplane launches on eighth mission

Space

Boeing X-37B Spaceplane launches on eighth mission

27 August 2025

The Boeing built X 37B Orbital Test Vehicle has launched on its eighth mission, aboard a SpaceX Falcon 9 from Kennedy Space Center, Florida and the vehicle is healthy on orbit and standard checkout.

Advertisement
ODU RT