Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • Next-gen space materials head for ISS

Space

Next-gen space materials head for ISS

At 2.29am today, 'next-generation' space materials developed by UK scientists blasted off from Earth on a Space X rocket, heading to the International Space Station (ISS) to undergo testing, which could be used for space bases and interplanetary travel.

Above: Some of the team behind the materials heading to the ISS.
Courtesy University of Bristol

Developed at the University of Bristol, these high-performance materials could be used to build future space stations, spacecraft for interplanetary travel or a new ISS.

Image courtesy University of Bristol / NASA

They will be placed on the Bartolomeo platform, located on the front of the ISS, where they will orbit Earth up to 9,000 times over the next 12 to 18 months at speeds of 17,000 mph.

Advertisement
Security & Policing Rectangle

The carbon fibre reinforced composites will need to survive temperatures between -150ºC and +120ºC, space debris travelling seven times faster than a bullet, severe electromagnetic radiation, high vacuum and atomic oxygen, which erodes even the toughest materials.

Prof Ian Hamerton, Professor of Polymers and Sustainable Composites in the University of Bristol’s world-leading Bristol Composites Institute, said: “Space is the most challenging environment for which to design new materials. You’re pitting your materials expertise, skills and ingenuity against extremes of temperature, mechanical stress, radiation, high speed impacts and more.

“Any one of those might be difficult, and, unfortunately, gaining access to repair them is not an easy option, so the materials we build must survive without maintenance.
 
“The opportunity to test our materials in the proving ground of space is priceless and will help our University of Bristol scientists on the ground improve fibre-reinforced materials for next-generation space missions.”

There are four laboratory-made polymers heading to the ISS, each of which has been reinforced with carbon fibres and two contain nanoparticles. All four are the result of University of Bristol research and one is patented.
 
If the materials cope in the harsh environment, they could be used to create longer-lasting space components, allowing spacecraft to travel further and spend more time in space.
 
Future communities on new planets will need protection against galactic cosmic radiation. Dr Ali Kandemir, Senior Research Associate at the University of Bristol, is one of several Bristol researchers, supported by the UK Space Agency (UKSA), examining the effects of simulated galactic cosmic radiation on the materials, in a European Space Agency (ESA) project.
 
Dr Kandemir said: “We want materials that are resilient in the space environment and, importantly, materials that can shield humans from that radiation.

“We also want to make these materials sustainable, so that when they reach the end of their life they can be recycled and used again for the same purpose.”
 
The launch of the Space X Dragon CRS-2 spacecraft this morning is the culmination of five years of work for Prof Hamerton and his team.

It has included the efforts of early career researchers, postgraduates and several Aerospace Engineering undergraduates at the University of Bristol, whose final year research projects have been linked to the space materials project.

Advertisement
ODU RT

The practical support of the University of Bristol-hosted National Composites Centre (NCC) was crucial to the scale up of the composite materials.

Prof Kate Robson Brown, Vice-President for Research, Innovation and Impact at University College Dublin and a collaborator on the project, said: “After nearly five years of research to develop novel composite materials for space applications it is very exciting to see our experiment launch to the International Space Station.

“I am proud to be part of this mission, and to be working with the multidisciplinary and multisector research team to deliver integrated real world and digital testing for innovative materials which will help to drive growth in the new space economy.

“This mission also demonstrates how space research funding creates career changing opportunities for early career researchers and PhD students in a sector of huge value to both Ireland and the UK.”

Funding to support the project was supplied by the ESA, the UKSA, Oxford Space Systems and others.

The University of Bristol’s MSc in Advanced Composites is based at the BCI.

Advertisement
Babcock LB
Skyrora leads on ESA

Space

Skyrora leads on ESA's GSTP to develop Tanbium

28 October 2025

British rocket and space technology company Skyrora has announced its participation as a prime contractor in the European Space Agency’s (ESA) General Support Technology Programme (GSTP), to develop Tanbium, a breakthrough alloy set to revolutionise rocket engine production with 3D printing.

Dark matter debate narrows

Space

Dark matter debate narrows

27 October 2025

An international team of researchers, including astronomers at the University of Surrey, has shed light on a decades-long debate about why galaxies rotate faster than expected and whether this behaviour is caused by unseen dark matter or a breakdown of gravity on cosmic scales.

Airbus-built SpainSat NG-II launched

Space

Airbus-built SpainSat NG-II launched

24 October 2025

SpainSat NG-II, the second Airbus-built new generation secure communications satellite for Spain, has been successfully launched from the Kennedy Space Center, in the US.

Sir Jeremy Quin appointed President of Boeing UK & Ireland

Aerospace Defence Space

Sir Jeremy Quin appointed President of Boeing UK & Ireland

24 October 2025

Boeing has named the Rt Hon Sir Jeremy Quin as the new President of Boeing UK & Ireland.

Advertisement
ODU RT
Airbus, Leonardo and Thales to combine space activities

Space

Airbus, Leonardo and Thales to combine space activities

23 October 2025

Airbus, Leonardo and Thales, have signed a Memorandum of Understanding (MoU) aimed at combining their respective space activities into a new company.

ALL.SPACE to develop alternative PNT for ESA

Space

ALL.SPACE to develop alternative PNT for ESA

22 October 2025

ALL.SPACE has been awarded €950,000 by the European Space Agency’s Navigation Innovation and Support Programme (NAVISP), to develop an alternative Position, Navigation and Timing (PNT) capability designed to operate in Global Navigation Satellite System (GNSS)-denied environments.

Advertisement
Security & Policing Rectangle