Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • Next-gen space materials head for ISS

Space

Next-gen space materials head for ISS

At 2.29am today, 'next-generation' space materials developed by UK scientists blasted off from Earth on a Space X rocket, heading to the International Space Station (ISS) to undergo testing, which could be used for space bases and interplanetary travel.

Above: Some of the team behind the materials heading to the ISS.
Courtesy University of Bristol

Developed at the University of Bristol, these high-performance materials could be used to build future space stations, spacecraft for interplanetary travel or a new ISS.

Image courtesy University of Bristol / NASA

They will be placed on the Bartolomeo platform, located on the front of the ISS, where they will orbit Earth up to 9,000 times over the next 12 to 18 months at speeds of 17,000 mph.

Advertisement
Leonardo animated rectangle

The carbon fibre reinforced composites will need to survive temperatures between -150ºC and +120ºC, space debris travelling seven times faster than a bullet, severe electromagnetic radiation, high vacuum and atomic oxygen, which erodes even the toughest materials.

Prof Ian Hamerton, Professor of Polymers and Sustainable Composites in the University of Bristol’s world-leading Bristol Composites Institute, said: “Space is the most challenging environment for which to design new materials. You’re pitting your materials expertise, skills and ingenuity against extremes of temperature, mechanical stress, radiation, high speed impacts and more.

“Any one of those might be difficult, and, unfortunately, gaining access to repair them is not an easy option, so the materials we build must survive without maintenance.
 
“The opportunity to test our materials in the proving ground of space is priceless and will help our University of Bristol scientists on the ground improve fibre-reinforced materials for next-generation space missions.”

There are four laboratory-made polymers heading to the ISS, each of which has been reinforced with carbon fibres and two contain nanoparticles. All four are the result of University of Bristol research and one is patented.
 
If the materials cope in the harsh environment, they could be used to create longer-lasting space components, allowing spacecraft to travel further and spend more time in space.
 
Future communities on new planets will need protection against galactic cosmic radiation. Dr Ali Kandemir, Senior Research Associate at the University of Bristol, is one of several Bristol researchers, supported by the UK Space Agency (UKSA), examining the effects of simulated galactic cosmic radiation on the materials, in a European Space Agency (ESA) project.
 
Dr Kandemir said: “We want materials that are resilient in the space environment and, importantly, materials that can shield humans from that radiation.

“We also want to make these materials sustainable, so that when they reach the end of their life they can be recycled and used again for the same purpose.”
 
The launch of the Space X Dragon CRS-2 spacecraft this morning is the culmination of five years of work for Prof Hamerton and his team.

It has included the efforts of early career researchers, postgraduates and several Aerospace Engineering undergraduates at the University of Bristol, whose final year research projects have been linked to the space materials project.

Advertisement
ODU RT

The practical support of the University of Bristol-hosted National Composites Centre (NCC) was crucial to the scale up of the composite materials.

Prof Kate Robson Brown, Vice-President for Research, Innovation and Impact at University College Dublin and a collaborator on the project, said: “After nearly five years of research to develop novel composite materials for space applications it is very exciting to see our experiment launch to the International Space Station.

“I am proud to be part of this mission, and to be working with the multidisciplinary and multisector research team to deliver integrated real world and digital testing for innovative materials which will help to drive growth in the new space economy.

“This mission also demonstrates how space research funding creates career changing opportunities for early career researchers and PhD students in a sector of huge value to both Ireland and the UK.”

Funding to support the project was supplied by the ESA, the UKSA, Oxford Space Systems and others.

The University of Bristol’s MSc in Advanced Composites is based at the BCI.

Advertisement
General Atomics LB
Skyports completes move to Drone Operations HQ

Aerospace Space

Skyports completes move to Drone Operations HQ

17 December 2025

Skyports Drone Services (Skyports) has completed a move into its new flagship, purpose-built, Drone Operations Hub in Westcott Venture Park, equipping the company with a state-of-the-art centralised facility for its UK, European and global drone operations.

BAE Systems to advance autonomous space-based surveillance tech for DARPA

Defence Space

BAE Systems to advance autonomous space-based surveillance tech for DARPA

15 December 2025

The US Defense Advanced Research Projects Agency (DARPA) has awarded BAE Systems’ FAST Labs research, development and production organisation a $16 million Phase 2 contract for the Oversight programme.

Spaceport Cornwall and National Drone Hub launch UAS project

Aerospace Defence Security Space

Spaceport Cornwall and National Drone Hub launch UAS project

15 December 2025

The UK's first licensed spaceport, Spaceport Cornwall, has commenced work on a groundbreaking project with the National Drone Hub to establish a unique testing environment for uncrewed aerial systems (UAS).

GMV UK advances resilient satellite navigation with BEACON

Space

GMV UK advances resilient satellite navigation with BEACON

15 December 2025

GMV, through its subsidiaries in the UK and Portugal, in partnership with Loughborough University, has been awarded a contract under the European Space Agency’s NAVISP programme to develop BEACON, an advanced beamforming antenna and receiver system designed to improve the resilience of C-band radionavigation signals from Low Earth Orbit (LEO) ...

Advertisement
Leonardo animated rectangle
Viasat’s rocket telemetry service selected by INNOSPACE

Space

Viasat’s rocket telemetry service selected by INNOSPACE

12 December 2025

Korean launch provider INNOSPACE has selected Viasat’s rocket telemetry service for its first ever commercial launch, marking the first time this service will be used in a commercial mission carrying satellite payloads.

ITA Airways adopts Iris tech

Aerospace Space

ITA Airways adopts Iris tech

11 December 2025

Viasat has announced that ITA Airways is being equipped with Iris technology, paving the way to trajectory-based operations which can cut emissions and enhance airline efficiency.

Advertisement
ODU RT