Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • University of Bristol and UKAEA team produce world's first carbon-14 diamond battery

Space

University of Bristol and UKAEA team produce world's first carbon-14 diamond battery

Scientists and engineers from the University of Bristol and the UK Atomic Energy Authority (UKAEA) have successfully created the world’s first carbon-14 diamond battery, which has game-changing applications, including in the space sector.

Courtesy UKAEA

This new type of battery has the potential to power devices for thousands of years, making it an incredibly long-lasting energy source.

The battery leverages the radioactive isotope, carbon-14, known for its use in radiocarbon dating, to produce a diamond battery.

Several game-changing applications are possible. Bio-compatible diamond batteries can be used in medical devices like ocular implants, hearing aids and pacemakers, minimising the need for replacements and distress to patients.

Diamond batteries could also be used in extreme environments – both in space and on earth – where it is not practical to replace conventional batteries. The batteries could power active radio frequency (RF) tags where there is a need to identify and track devices either on earth or in space, such as spacecraft or payloads, for decades at a time, thus reducing costs and extending operational lifespan.

Above: Weak radio luminescence captured by a low light intensity camera from a synthetic diamond carbon film made from beta-emitting carbon-14 atoms.
Courtesy University of Bristol

Professor Tom Scott, Professor in Materials at the University of Bristol, said: “Our micropower technology can support a whole range of important applications from space technologies and security devices through to medical implants. We're excited to be able to explore all of these possibilities, working with partners in industry and research, over the next few years.”

Advertisement
Security & Policing Rectangle

The carbon-14 diamond battery works by using the radioactive decay of carbon-14, which has a half-life of 5,700 years, to generate low levels of power. It functions similarly to solar panels, which convert light into electricity, but instead of using light particles (photons), they capture fast-moving electrons from within the diamond structure.
Advertisement
ODU RT

“Diamond batteries offer a safe, sustainable way to provide continuous microwatt levels of power. They are an emerging technology that use a manufactured diamond to safely encase small amounts of carbon-14,” said Sarah Clark, Director of Tritium Fuel Cycle at UKAEA.

Above: Members of the Diamond Battery team, including Neil Fox, Professor of Materials for Energy at the University of Bristol (far left), with the Plasma Deposition Rig at UKAEA.
Courtesy University of Bristol / Credit UKAEA

A team of scientists and engineers from both organisations worked together to build a plasma deposition rig, a specialised apparatus used for growing the diamond at UKAEA’s Culham Campus.

This development is the result, in part, of UKAEA’s work on fusion energy.

The expertise gained in fusion research is helping to accelerate innovation in related technologies.

Advertisement
Babcock LB Babcock LB
Airbus demonstrator to test global 5G connectivity in orbit

Space

Airbus demonstrator to test global 5G connectivity in orbit

14 January 2026

Airbus UpNext has launched a new demonstrator called Airbus UpNext SpaceRAN (Space Radio Access Network) - aimed at enabling standardised global connectivity by exploring advanced 5G Non-Terrestrial Network (NTN) capabilities - working with consortium partners including Southampton based AccelerComm.

ODU Connectors showcasing AMC solutions at SDSC-UK

Aerospace Defence Security Space Events

ODU Connectors showcasing AMC solutions at SDSC-UK

13 January 2026

ODU Connectors will be displaying all of their current AMC (Advanced Military Connectors) at the Specialist Defence and Security Convention-UK (SDSC-UK), taking place 3rd-5th February at the NEC Birmingham, which will include a couple of new items aimed specifically at rugged, embedded systems in the military and aerospace market.

ESA and ClearSpace initiate PRELUDE

Space

ESA and ClearSpace initiate PRELUDE

13 January 2026

The European Space Agency (ESA) and ClearSpace have initiated the PRELUDE mission which marks a transformative milestone for European space operations, serving as a pivotal step in validating critical technologies for in-orbit life extension and active debris removal (ADR).

NI SPACE launches Space Ready Programme

Space

NI SPACE launches Space Ready Programme

12 January 2026

NI SPACE is spearheading efforts to position Northern Ireland companies at the forefront of the UK's burgeoning space sector, through the launch and delivery of the NI Space Ready Programme.

Advertisement
ODU RT
Airbus awarded Eutelsat contract for 340 OneWeb LEO satellites

Space

Airbus awarded Eutelsat contract for 340 OneWeb LEO satellites

12 January 2026

Airbus Defence and Space has been awarded a contract by Eutelsat to build a further 340 OneWeb low Earth orbit (LEO) satellites.

SSTL and Oxford Space Systems confirm launch of CarbSAR IOD Satellite

Space

SSTL and Oxford Space Systems confirm launch of CarbSAR IOD Satellite

12 January 2026

Surrey Satellite Technology Ltd (SSTL) and Oxford Space Systems (OSS) have announced the launch of CarbSAR IOD, SSTL’s latest Synthetic Aperture Radar (SAR) technology demonstration satellite incorporating Oxford Space Systems’ Wrapped Rib Antenna, aboard a Falcon 9 rocket operated by SpaceX from Vandenberg Space Force Base, California.

Advertisement
Security & Policing Rectangle
Advertisement
Babcock LB Babcock LB