Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • University of Bristol and UKAEA team produce world's first carbon-14 diamond battery

Space

University of Bristol and UKAEA team produce world's first carbon-14 diamond battery

Scientists and engineers from the University of Bristol and the UK Atomic Energy Authority (UKAEA) have successfully created the world’s first carbon-14 diamond battery, which has game-changing applications, including in the space sector.

Courtesy UKAEA

This new type of battery has the potential to power devices for thousands of years, making it an incredibly long-lasting energy source.

The battery leverages the radioactive isotope, carbon-14, known for its use in radiocarbon dating, to produce a diamond battery.

Several game-changing applications are possible. Bio-compatible diamond batteries can be used in medical devices like ocular implants, hearing aids and pacemakers, minimising the need for replacements and distress to patients.

Diamond batteries could also be used in extreme environments – both in space and on earth – where it is not practical to replace conventional batteries. The batteries could power active radio frequency (RF) tags where there is a need to identify and track devices either on earth or in space, such as spacecraft or payloads, for decades at a time, thus reducing costs and extending operational lifespan.

Above: Weak radio luminescence captured by a low light intensity camera from a synthetic diamond carbon film made from beta-emitting carbon-14 atoms.
Courtesy University of Bristol

Professor Tom Scott, Professor in Materials at the University of Bristol, said: “Our micropower technology can support a whole range of important applications from space technologies and security devices through to medical implants. We're excited to be able to explore all of these possibilities, working with partners in industry and research, over the next few years.”

Advertisement
ODU RT

The carbon-14 diamond battery works by using the radioactive decay of carbon-14, which has a half-life of 5,700 years, to generate low levels of power. It functions similarly to solar panels, which convert light into electricity, but instead of using light particles (photons), they capture fast-moving electrons from within the diamond structure.
Advertisement
ODU RT

“Diamond batteries offer a safe, sustainable way to provide continuous microwatt levels of power. They are an emerging technology that use a manufactured diamond to safely encase small amounts of carbon-14,” said Sarah Clark, Director of Tritium Fuel Cycle at UKAEA.

Above: Members of the Diamond Battery team, including Neil Fox, Professor of Materials for Energy at the University of Bristol (far left), with the Plasma Deposition Rig at UKAEA.
Courtesy University of Bristol / Credit UKAEA

A team of scientists and engineers from both organisations worked together to build a plasma deposition rig, a specialised apparatus used for growing the diamond at UKAEA’s Culham Campus.

This development is the result, in part, of UKAEA’s work on fusion energy.

The expertise gained in fusion research is helping to accelerate innovation in related technologies.

Advertisement
Babcock LB
Spaceflux awarded UK Government space surveillance and tracking contracts

Defence Security Space

Spaceflux awarded UK Government space surveillance and tracking contracts

20 November 2025

UK-based specialist in space domain awareness (SDA) and space intelligence, Spaceflux Ltd, has won all three major multimillion-pound, multiyear UK government contracts to provide advanced space surveillance and tracking (SST) data across multiple orbital regimes.

BAE Systems advances RH12 Storefront

Space

BAE Systems advances RH12 Storefront

20 November 2025

BAE Systems has added new capabilities to its next-generation, radiation-hardened 12 nanometer (nm) Storefront.

GMV UK strengthens space safety

Space

GMV UK strengthens space safety

19 November 2025

GMV UK has taken a decisive step forward in the field of space safety with the development and implementation of an advanced collision avoidance capability for Low Earth Orbit (LEO) satellite constellations.

SaxaVord strengthens ops with new appointments

Space

SaxaVord strengthens ops with new appointments

18 November 2025

SaxaVord Spaceport has bolstered its growing team with two new senior appointments in operations as it prepares for first launch, with Ian Palmer joining as Director of Operations and Nadine Armiger-Drake as Spaceport Operations Manager.

Advertisement
Tritax 300x250
Airbus-built Sentinel-6B climate satellite launched

Space

Airbus-built Sentinel-6B climate satellite launched

17 November 2025

The Airbus-built Sentinel-6B satellite has successfully launched from Vandenberg Space Force Base in California.

KT-UK and RADX partner on solutions for UK and Europe

Aerospace Defence Security Space

KT-UK and RADX partner on solutions for UK and Europe

17 November 2025

Konrad-Technologies UK Ltd (KT-UK) and RADX Technologies, Inc. (RADX) have entered a new partnership under which KT-UK will integrate solutions across the UK and EU.

Advertisement
ODU RT