Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • University of Glasgow engineers test self-eating rocket

Space

University of Glasgow engineers test self-eating rocket

University of Glasgow engineers have built and fired the first unsupported ‘autophage’ rocket engine which consumes parts of its own body for fuel.

Image courtesy University of Glasgow

New developments on a nearly century-old concept for a ‘self-eating’ rocket engine capable of flight beyond the Earth’s atmosphere could help the UK take a bigger bite of the space industry.

The design of the autophage engine - the name comes from the Latin word for ‘self-eating’ - has several potential advantages over conventional rocket designs.

Advertisement
ODU RT

The engine works by using waste heat from combustion to sequentially melt its own plastic fuselage as it fires. The molten plastic is fed into the engine’s combustion chamber as additional fuel to burn alongside its regular liquid propellants.

This means that an autophage vehicle would require less propellant in onboard tanks, and the mass freed up could be allocated to payload instead. The consumption of the fuselage could also help avoid adding to the problem of space debris – discarded waste that orbits the Earth and could hamper future missions.

Overall, the greater efficiency could help autophage rockets take a greater payload into space compared to a conventional rocket of the same mass. They could, for example, take tiny ‘nanosatellites’ into space directly without having to share space on more expensive conventionally-fuelled rockets.

The concept of a self-eating rocket engine was first proposed and patented in 1938. However, no autophage engine designs were fired in a controlled manner until a research partnership between the University of Glasgow and Dnipro National University in Ukraine achieved this milestone in 2018.

Now, with support from Kingston University, the Glasgow engineers have demonstrated that more energetic liquid propellants can be used, and that the plastic fuselage can withstand the forces required to feed it into the engine without buckling. These are essential steps in developing a viable flight concept.

The team’s design developments are being showcased this week as a paper presented at the international AIAA SciTech Forum in Orlando, Florida.

In the paper, the team describe how they successfully test-fired their Ouroborous-3 autophage engine, producing 100 newtons of thrust in a series of controlled experiments. The test fires were conducted at the MachLab facility at Machrihanish Airbase.

The Ouroborous-3 uses high-density polyethylene plastic tubing as its autophagic fuel source, burning it alongside the rocket’s main propellants – a mix of gaseous oxygen and liquid propane.

The tests showed that the Ourobourous-3 is capable of stable burn - a key requirement for any rocket engine - throughout the autophage stage, with the plastic fuselage supplying up to one-fifth of the total propellant used.

The tests also showed that the rocket’s burn could be successfully controlled, with the team demonstrating its ability to be throttled, restarted and pulsed in an on/off pattern. All of these abilities could help future autophage rockets control their ascent from the launchpad into orbit.

Professor Patrick Harkness, of the University of Glasgow’s James Watt School of Engineering, led the development of the Ourouboros-3 autophage engine. He said: “These results are a foundational step on the way to developing a fully-functional autophage rocket engine. Those future rockets could have a wide range of applications which would help advance the UK’s ambitions to develop as a key player in the space industry.

Advertisement
Gulfstream RT July

“A conventional rocket’s structure makes up between five and 12% of its total mass. Our tests show that the Ouroborous-3 can burn a very similar amount of its own structural mass as propellant. If we could make at least some of that mass available for payload instead, it would be a compelling prospect for future rocket designs.”

Postgraduate researcher Krzysztof Bzdyk, of the James Watt School of Engineering, is the paper’s corresponding author. He said: “Getting to this stage involved overcoming a lot of technical challenges but we’re delighted by the performance of the Ourouboros-3 in the lab.

“From here, we’ll begin to look at how we can scale up autophage propulsion systems to support the additional thrust required to make the design function as a rocket.”


 
Development of the team’s autophage engine will continue with the support of new funding from the UK Space Agency (UKSA) and the Sciences and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).

The autophage engine is one of 23 space technology projects recently selected to share in £4 million from UKSA and STFC. The Glasgow team received £290,000 to help establish further pilot testing of the prototype engine.

Dr Paul Bate, CEO of the UK Space Agency, said:  “One of the key ways we catalyse investment into the UK’s growing space sector is by backing innovations in emerging areas of space technology. The University of Glasgow’s impressive work towards an autophage engine is an example of one which has great potential to meet the growing global appetite for developments in the efficiency and sustainability of rocket propulsion.”

Jack Tufft, a postgraduate researcher at the James Watt School of Engineering, is a co-author of the paper. He said: “We’re really excited by the potential of the Ouroboros-3, and this further funding will help us move forward with exploring new developments and refinements to our design. Our aim is to bring the autophage engine closer to a test launch, which will help us develop our design for future generations of autophage rockets.”

The team’s paper, titled ‘Investigation of the Operating Parameters and Performance of an Autophage, Hybrid Rocket Propulsion System’ will be presented at the AIAA SciTech Forum on Wednesday 10 January.

The research was supported by funding from the UK Ministry of Defence and the Science and Technology Facilities Council.

 

Advertisement
Babcock LB
LOT Polish Airlines selects Viasat for Dreamliner fleet

Aerospace Space

LOT Polish Airlines selects Viasat for Dreamliner fleet

26 July 2024

LOT Polish Airlines, Poland's flag carrier and Viasat a global leader in satellite communications, have officially announced that 15 aircraft across LOT's wide-body Boeing 787-8 and 787-9 Dreamliner fleets will be equipped with Viasat's Ka-band, global in-flight connectivity solution.

BAE Systems and Stellar Blu Solutions complete qualification on Sidewinder aero terminal

Aerospace Defence Space

BAE Systems and Stellar Blu Solutions complete qualification on Sidewinder aero terminal

24 July 2024

BAE Systems’ strategic partner Stellar Blu Solutions has completed qualification and earned supplemental type certification on the multiorbit Sidewinder aero terminal using BAE Systems’ Ku-band electronically scanned antenna.

UK Space Agency names Aqualunar Challenge finalists

Space Events

UK Space Agency names Aqualunar Challenge finalists

24 July 2024

Ten cutting-edge teams of innovators, engineers and scientists, that are developing new technologies to provide a permanent crewed base on the Moon with reliable water supplies, have been named finalists in the Aqualunar Challenge.

UK space programme given boost at FIA2024

Space Events

UK space programme given boost at FIA2024

23 July 2024

More than 20 national space projects have been announced by DSIT Secretary of State Peter Kyle, on the opening day of the Farnborough International Airshow (FIA) 2024.

Advertisement
ODU RT 2
UK advanced manufacturing on show at FIA2024

Aerospace Defence Security Space Events

UK advanced manufacturing on show at FIA2024

23 July 2024

In his opening ceremony speech at the Farnborough International Airshow (FIA) 2024 yesterday, Kevin Craven, ADS CEO and Chair, Farnborough International, stressed the importance of UK advanced manufacturing and partnership - between industry, government and international partners - in securing sustainability and future advantage.

Orbex establishes London base and expands HQ

Space

Orbex establishes London base and expands HQ

22 July 2024

Orbital launch services company, Orbex, is to set up a base in London while also expanding its headquarters in Scotland.

Advertisement
ODU RT