in Features

Data-driven design development for military vehicles

Posted 13 August 2018 · Add Comment

Emma Cygan, Design and Development Engineer at Pailton Engineering, explains how data from real life military vehicles is informing the design and testing of new parts.



The military vehicle sector is rapidly adapting to changing security threats and new technologies. In fact, much of Britain’s Ministry of Defence (MoD) and the US Department of Defence (DoD) procurement activity now uses cloud services, software and technology products involved in the collection and processing of huge reams of data. However, the industry is still at the early stages of making full use of the wealth of information available to it.

Designing with data means that military vehicles are able to take on the rough terrain and turbulent conditions of the real world with maximum survivability but where does this data come from?

Connected military vehicles are generating gigabytes of data from sensor-packed functions including on-board systems that monitor a vehicle’s oil, temperature and fuel consumption, as well as more general performance data, such as speed, distance travelled and location. This data can be used to track vehicles and personnel - and importantly - make intelligent decisions and inform the design of future vehicles.

By using data generated from real-life vehicles, design engineers can make more informed decisions on how to best manufacture a military vehicle. Instead, real-life vehicle data is used to design, manufacture and test military-grade steering systems against the specified load and frequency data of the real-life application. If the load data is unknown, theoretical calculations and simulation software can also outline loads.

It is not necessarily the static values of the load or frequency data that is of most concern in the design process, considering that most military vehicles are designed to go above and beyond the actual loads and frequencies they will face. Rather, it is the dynamic nature of the vehicle’s activity — the varying loads, the changeable frequencies and irregular abusive loads that occur during the vehicle's life that should be a fundamental consideration.


Courtesy Pailton Engineering


This use of real-life data takes this dynamism from the qualitative realm, to the quantitative realm, so engineers can use this data when developing a vehicle's design.

Data-driven testing
Data-driven design enables data-driven testing. One of the most important parameters to test for a military vehicle and its parts is the maximum load. With this information you can observe how much force a part can endure, in both tensile and compression, before a failure occurs. Using different rigs to test a range of force applications, forces up to ±400kN can be applied both statically or dynamically.

Moreover, with enough data, you can compile a multitude of loads at their respective frequencies and cycles as part of a dynamic block testing programme. This programme effectively mirrors the real-life data that is gathered from the vehicle to accurately assess the true fatigue life of the part.

With a variety of loads and frequencies in place, engineers can measure the number of cycles that the parts can endure over time, performing 1,000,000 load cycles in only one week. That is enough to replicate infinite life for a part on a vehicle, meaning lifecycle management decisions can be made in advance. 

As connected military vehicles are generating more data than ever before, it makes sense that these vehicles be produced with meaningful design data at conception, to maximise safety, performance and efficiency.

 

Other Stories
Advertisement
Latest News

Raytheon UK's Landshield foils jammers

Raytheon UKs next-gen GPS anti-jamming system, Landshield, has been developed to not only provide alerts on the presence of interfering signals and data in real time but also nullifies the effects of a whole range of hostile jammers.

Horizon Technologies secures FlyingFish order at IDEX 2021

Horizon Aerospace Technologies Division has received an order for a FlyingFish FF3/S Sat Phone geolocation system (and ancillary items) from a UAE prime contractor yesterday at IDEX 2021 in Abu Dhabi, for use on a surveillance aircraft

TAM to enhance airport ops across the value chain

Frost & Sullivan's recent analysis, Data Integration to Drive Global Total Airport Management (TAM) Market Growth, 2030, finds that total airport management (TAM) aims to address multiple challenges faced by airports across

Menzies and Vestergaard trial electric deicing unit at Oslo Airport

Menzies Aviation today announced its trial of the Vestergaard Elephant e-BETA, a new electrically operated de-icing unit, at Oslo Airport.

UK space sector gets new government support

A series of measures to support the UKs space sector in building back better have been outlined by the government today.

UK and Australia to accelerate advanced materials integration

The UK and Australian governments are funding innovative proposals to integrate advanced materials into military platforms such as armoured vehicles.

DSEI sk1602170921
See us at
DSEI bt1602170921Security & Policing 2021 BT