in Features

Data-driven design development for military vehicles

Posted 13 August 2018 · Add Comment

Emma Cygan, Design and Development Engineer at Pailton Engineering, explains how data from real life military vehicles is informing the design and testing of new parts.



The military vehicle sector is rapidly adapting to changing security threats and new technologies. In fact, much of Britain’s Ministry of Defence (MoD) and the US Department of Defence (DoD) procurement activity now uses cloud services, software and technology products involved in the collection and processing of huge reams of data. However, the industry is still at the early stages of making full use of the wealth of information available to it.

Designing with data means that military vehicles are able to take on the rough terrain and turbulent conditions of the real world with maximum survivability but where does this data come from?

Connected military vehicles are generating gigabytes of data from sensor-packed functions including on-board systems that monitor a vehicle’s oil, temperature and fuel consumption, as well as more general performance data, such as speed, distance travelled and location. This data can be used to track vehicles and personnel - and importantly - make intelligent decisions and inform the design of future vehicles.

By using data generated from real-life vehicles, design engineers can make more informed decisions on how to best manufacture a military vehicle. Instead, real-life vehicle data is used to design, manufacture and test military-grade steering systems against the specified load and frequency data of the real-life application. If the load data is unknown, theoretical calculations and simulation software can also outline loads.

It is not necessarily the static values of the load or frequency data that is of most concern in the design process, considering that most military vehicles are designed to go above and beyond the actual loads and frequencies they will face. Rather, it is the dynamic nature of the vehicle’s activity — the varying loads, the changeable frequencies and irregular abusive loads that occur during the vehicle's life that should be a fundamental consideration.


Courtesy Pailton Engineering


This use of real-life data takes this dynamism from the qualitative realm, to the quantitative realm, so engineers can use this data when developing a vehicle's design.

Data-driven testing
Data-driven design enables data-driven testing. One of the most important parameters to test for a military vehicle and its parts is the maximum load. With this information you can observe how much force a part can endure, in both tensile and compression, before a failure occurs. Using different rigs to test a range of force applications, forces up to ±400kN can be applied both statically or dynamically.

Moreover, with enough data, you can compile a multitude of loads at their respective frequencies and cycles as part of a dynamic block testing programme. This programme effectively mirrors the real-life data that is gathered from the vehicle to accurately assess the true fatigue life of the part.

With a variety of loads and frequencies in place, engineers can measure the number of cycles that the parts can endure over time, performing 1,000,000 load cycles in only one week. That is enough to replicate infinite life for a part on a vehicle, meaning lifecycle management decisions can be made in advance. 

As connected military vehicles are generating more data than ever before, it makes sense that these vehicles be produced with meaningful design data at conception, to maximise safety, performance and efficiency.

 

* required field

Post a comment

Other Stories
Advertisement
Latest News

Survitec appoints Richard Mears to lead realigned defence & aerospace division

Survitec is supporting the restructuring of its defence & aerospace division division with the appointment of Richard Mears as its new Director for Global Defence & Aerospace Sales.

First EgyptAir A220-300 completes maiden flight

The first A220-300 for EgyptAir has successfully completed its inaugural test flight from the Mirabel assembly line.

Alec Don named as new DECA Chairman

The Defence Electronics and Components Agency (DECA) today announced the appointment of Alec Don as Chairman of the Board.

BAE Systems' RAD750 powers GPS III satellite

GPS III, the most powerful Global Positioning System satellite ever built, launched from Cape Canaveral yesterday, equipped with BAE Systems' RAD750 Single Board Computer.

BA invests in phones for all cabin crew

As part of British Airways’ £6.5 billion investment for customers, the airline has announced that all of its 15,000 cabin crew will be issued with iPhone XRs to help them offer a more personalised service to the more than 45 million

BAE Systems' Bofors 57mm gun selected for Indonesian Navy’s attack craft

The Indonesian Navy has selected BAE Systems’ Bofors 57 Mk3 naval gun system for the country’s KCR-60 fast-attack vessel programme.

See us at
DSEI JP BT1605201119VIDSE BT1605060320SMI ActiveP BT1206121119SMI FAV BT1006141119TMP BT0708090919FIL20BT010819260720SMI GMS BT1906071119ADSS1000DBT1706171019