Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Features
  • /
  • Developing UK PEMD aerospace supply chains

Features

Developing UK PEMD aerospace supply chains

With the switch to sustainable air travel to meet CO2 emission targets a necessity, the UK Government is investing millions into the manufacture of Power Electronics, Machines and Drives (PEMD) for the UK aerospace sector.

Image copyright Shutterstock

Time is running out, so the aerospace sector needs to continuously innovate – and fast. To continue to lead the way, the UK aerospace sector will need to rapidly scale up the manufacturing of Power Electronics, Machines and Drives (PEMD).

The future of air travel will include electric, hybrid or hydrogen. PEMD – the most important acronym most people have never heard of – will play an essential role in the evolution of all three of these technologies in the UK’s aerospace sector. They are the enabling technologies that will make low carbon air travel a reality.

Advertisement
Advanced Engineering RT

Totalling nearly £80 million, UK Research and Innovation’s (UKRI) Driving the Electric Revolution challenge – a government-funded programme – is investing into these electrification technologies to support the up-scale of PEMD Manufacturing.

The challenge aims to:

  • Leverage the UK’s world leading research capability in PEMD to help industry create the supply chains necessary to manufacture the PEMD products developed here
  • Identify gaps in the supply chains and help industry fill them
  • Ensure cooperation and collaboration so we don’t duplicate effort, waste time and can reuse solutions across all sectors
  • Help fill the skills gap by retraining, upskilling and repurposing engineers from traditional internal combustion businesses into PEMD supply chains

It is the UK’s most important intervention into PEMD. The Driving the Electric Revolution challenge provides funding opportunities for collaboration between SMEs, big businesses and academia to create innovative and cost-effective solutions. It also works to establish ‘best-in-class’ industrialisation facilities to create robust and resilient UK supply chains.

Thanks to UKRI, the Driving the Electric Revolution challenge has already invested in 40 ground-breaking PEMD projects, many that can be applied  to the aerospace sector with more funding successes yet to be announced.

One area to have benefited from UKRI funding can be found within the development of GaN and SiC high-power WBG semi-conductors – components that will play a crucial role in the development power-dense aircraft propulsion systems.

Projects in this area which have received funding through the Driving the Electric Revolution challenge include SLOGaN (CSC LTd, Newport Water Fab, University of Bristol), GaNSiC (Custom Interconnect Ltd, CSAC) and SOCRATES (SPTS, CS Connected, NWF, CSC Ltd).

These projects are focused on improving critical elements of the manufacturing process, filling in gaps in the UK’s semiconductor value chain – enabling next generation more electric, hybrid, hydrogen and fully electric aircraft to be built from UK components.

Advertisement
ODU RT

Another project to have benefited from funding through the Driving the Electric Revolution challenge, looks at creating a simulation tool that will expedite the development of eVTOL (Vertical Take-Off and Landing) vehicles. The funding awarded to Drive System Design will develop a toolchain which will simulate thousands of detailed propulsion systems. This tool will allow for design optimisation by evaluating the trade-offs between vehicle range, mass and cost. As a result, the toolchain will reduce development timescales and speed up the certification process.

Also, there is High-T Hall, which will deliver a demonstration of an advanced Hall sensor for the aerospace sector. Based on 2D graphene technology, the project, that includes Rolls-Royce and Paragraf, will provide a bespoke packaging system that will operate in high temperature environments, accurately measuring current that will enable precision control of electric motors and generators to increase their operating efficiency.

 


 

 

 

Advertisement
L3Harris L3Harris
The rise of low-carbon aircraft

Features

The rise of low-carbon aircraft

24 April 2024

Stephen Gifford, Chief Economist at the Faraday Institution, examines the potential of three technologies being developed for future low-carbon aviation.

Prioritising sovereign capability

Features

Prioritising sovereign capability

17 April 2024

Martin Rowse, Campaign Director, Airbus Defence and Space, looks at why reinforcing the UK's security requires the prioritisation of sovereign capability across the country's defence and space sectors.

Insider threats: the risks employees can pose

Features

Insider threats: the risks employees can pose

8 April 2024

With insider threats on the increase, Noah Price, G4S Academy International Director, explains the risks and threats employees can pose to your organisation and how to prevent them.

Securing environmental licensing and sustainable data for spaceport operations

Features

Securing environmental licensing and sustainable data for spaceport operations

2 April 2024

Ruth Fain, head of advisory for ITPEnergised, who has worked with SaxaVord Spaceport, launch operators, local authorities and the CAA on environmental consent for UK spaceflight activities, outlines recommendations for future-proofing ongoing data collection for space operator activities in the UK.

Advertisement
Advanced Engineering RT
Securing military connectivity in contested environments

Features

Securing military connectivity in contested environments

14 March 2024

Tristan Wood, founder of Livewire Digital, explores the power of hybrid networking and how it can underpin robust wide area networks across all arms and services, from land, sea and air.

Defining data-centric security in complex future warfare

Features

Defining data-centric security in complex future warfare

1 March 2024

John Dix, Land Communications, Thales, considers the role of data-centric security and evolving soldier systems integration, in complex future warfare.

Advertisement
ODU RT