Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • ESA/NASA validate Airbus' ERO design

Space

ESA/NASA validate Airbus' ERO design

Airbus has passed an important milestone for the Earth Return Orbiter (ERO) mission, which will bring the first Mars samples back to Earth: it has passed the Preliminary Design Review with the European Space Agency (ESA) and with the participation of NASA.

Image copyright Airbus

With technical specifications and designs validated, suppliers from eight European countries are on board for nearly all components and sub-assemblies. Development and testing of equipments and sub-systems can now start to ensure the mission moves ahead on schedule.

“This PDR has been managed and closed in a record time of less than a year, an amazing achievement considering the complexity of the mission. The entire ERO team, including suppliers and agencies, has really pulled together and we are on target to achieve delivery in 2025 – only five and a half years after being selected as prime contractor” said Andreas Hammer, Head of Space Exploration at Airbus.

Advertisement
ODU RT

The next milestone will be the Critical Design Review in two years after which production and assembly will start, to secure delivery of the full spacecraft in 2025.

After launch in 2026, on an Ariane 64 launcher, the satellite will begin a five year mission to Mars, acting as a communication relay with the surface missions (including Perseverance and Sample Fetch Rovers), performing a rendezvous with the orbiting samples and bringing them safely back to Earth.

Dave Parker, Director of human and robotic exploration at ESA, said: “On behalf of all European citizens, I am proud to see ESA leading the first ever mission to return from Mars. As part of our strong cooperation with NASA, we are working to return pristine material from Mars – scientific treasure that the world’s scientists will study for generations to come and help reveal the history of the Red Planet”.

Airbus has overall responsibility for the ERO mission, developing the spacecraft in Toulouse, and conducting mission analysis in Stevenage. Thales Alenia Space will also have an important role, assembling the spacecraft, developing the communication system and providing the Orbit Insertion Module from its plant in Turin. Other suppliers come from Germany, France, UK, Italy, Spain, Norway, Denmark and The Netherlands.

The record development and design for ERO was only possible thanks to Airbus building on already mature and proven technologies, instead of developing brand new technologies with risk associated delays.

Proven Airbus technologies include the decades of experience in plasma (electric) propulsion, acquired through station keeping and in orbit operations of full electric telecom satellites, as well as its expertise on large solar arrays (telecoms and exploration missions, including JUICE, the biggest solar panels for an interplanetary mission until ERO) and complex planetary missions like BepiColombo, launched in 2018. 

Airbus will also leverage its vision based navigation technological lead (RemoveDEBRIS, Automatic Air to Air refueling),  and autonomous navigation expertise (Rosalind Franklin and Sample Fetch Rovers) and rendezvous and docking expertise built up over decades, using technologies from the successful ATV (Automated Transfer Vehicle) and recent developments from JUICE, Europe’s first mission to Jupiter.

The seven ton, seven metre high spacecraft, equipped with 144m² solar arrays with a span of over 40m – the largest ever built – will take about a year to reach Mars. It will use a mass-efficient hybrid propulsion system combining electric propulsion for the cruise and spiral down phases and chemical propulsion for Mars orbit insertion. Upon arrival, it will provide communications coverage for the NASA Perseverance Rover and Sample Retrieval Lander (SRL) missions, two essential parts of the Mars Sample Return campaign.

Advertisement
Marshall RT 2

For the second part of its mission, ERO will have to detect, rendezvous with, and capture a basketball-size object called the Orbiting Sample (OS), which houses the sample tubes collected by the Sample Fetch Rover (SFR, also to be designed and built by Airbus); all this over 50 million km away from ground control.

Once captured, the OS will be bio-sealed in a secondary containment system and placed inside the Earth Entry Vehicle (EEV), effectively a third containment system, to ensure that the precious samples reach the Earth’s surface intact for maximum scientific return.

It will then take another year for ERO to make its way back to Earth, where it will send the EEV on a precision trajectory towards a pre-defined landing site, before itself entering into a stable orbit around the Sun.

 

 

Advertisement
General Atomics LB General Atomics LB
PA Consulting launches Secure Futures report

Defence Security Space

PA Consulting launches Secure Futures report

24 April 2024

PA Consulting has announced the launch of its Secure Futures report, part of its Secure Futures series providing insights and events emphasising the importance of collaboration in delivering a secure future.

Rocket Lab launches NanoAvionics satellite bus carrying NASA’s solar sail system

Space

Rocket Lab launches NanoAvionics satellite bus carrying NASA’s solar sail system

24 April 2024

Kongsberg NanoAvionics has announced that the 12U nanosatellite bus it built for the in-orbit demonstration of NASA’s Advanced Composite Solar Sail System mission was successfully launched by Rocket Lab.

UK astronaut Rosemary Coogan aims for the stars after graduation

Space

UK astronaut Rosemary Coogan aims for the stars after graduation

22 April 2024

UK astronaut Rosemary Coogan is a step closer to space after a graduation ceremony today following her European Space Agency (ESA) training.

Orbex secures £16.7m investment

Space

Orbex secures £16.7m investment

19 April 2024

UK spaceflight company Orbex has received £16.7 million from six backers in an update to its Series C funding round.

Advertisement
ODU RT 2
CLEAR Mission reaches PDR maturity

Space

CLEAR Mission reaches PDR maturity

19 April 2024

ClearSpace today announced that its CLEAR Mission – funded as part of the UK Space Agency’s national debris removal programme – has achieved Preliminary Design Review (PDR) maturity, marking a significant advance in the collective aim of making space operations more sustainable.

Serco renews two key contracts with CERN

Space

Serco renews two key contracts with CERN

18 April 2024

Serco has signed the renewal of two contracts with the European Laboratory for Particle Physics (CERN), marking a 30-year-long partnership.

Advertisement
Advanced Engineering RT