Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • James Webb Space Telescope advances understanding of galaxies

Space

James Webb Space Telescope advances understanding of galaxies

New research that used data from James Webb Space Telescope (JWST) shows that crucial building blocks of planets and stars could form much earlier in the life cycle of galaxies than previously thought.

Above: This image highlights the location of the galaxy JADES-GS-z6 in a portion of an area of the sky known as GOODS-South, which was observed as part of the JWST Advanced Deep Extragalactic Survey, or JADES, data from which was used as part of the study.
Courtesy European Space Agency

An international team of astronomers has for the first time detected the presence of carbon-rich dust grains in the first billion years of the Universe.

Advertisement
DSEI 2025

These small diamond-like particles found between the stars are integral to the formation and evolution of galaxies such as the Milky Way.

The team is supported in part by UK Research and Innovation (UKRI) and the Science and Technology Facilities Council (STFC).

Answering fundamental questions
Early stars in a galaxy are made up of only hydrogen and helium. These stars though give rise other elements including carbon and oxygen through events such as supernova explosions.

Some of this carbon coalesces into microscopic dust grains that enable gasses to cool, and stars and planets to form as the galaxy grows and matures.

For this study, scientists used the James Webb Space Telescope (JWST) to look at light from extremely distant galaxies that are much younger than our own and found that these dust grains were present much earlier than predicted.

Discovering where we come from
Dr Joris Witstok, STFC funded researcher at the Kavli Institute for Cosmology at the University of Cambridge and lead author on the study said: "This is an exciting step towards discovering where we come from and how our solar system might have formed.

"Our results provide clues that should help us to trace back and determine when and how the elements that make up all of us first emerged in interstellar space."

Advanced scientific capabilities
Carbon-rich dust grains are detectable because they absorb light at particular, characteristic wavelengths.

It is only thanks to JWST and its advanced capabilities though, that the team were able to observe this effect. Prior to its launch, there were no telescopes that could receive light from such great distances.

The study made use of the advanced capabilities of the JWST NIRSpec (Near-Infrared Spectrograph) instrument.

Dr Joris Witstok, continued: "We’re still constantly surprised by how much detail we’re able to achieve with JWST and the new astrophysics we’re able to explore.

Advertisement
DSEI 2025

"This result is just the latest in a long line of things we weren’t expecting to find that JWST has thrown at us."

Looking to the future
The team will now look to use an even bigger dataset on other galaxies to verify their findings.

They also plan to involve theorists to help explain how the carbon-rich dust grains observed could have formed in such a short timescale.

Dr Renske Smit, researcher at the Liverpool John Moores University Astrophysics Research Institute and STFC Ernest Rutherford Fellow, who contributed to the study said: "I’ve studied galaxies in the first billion years of cosmic time my entire career and never did we expect to find such a clear signature of cosmic dust in such distant galaxies. The ultradeep data from JWST is showing us that grains made up of diamond-like dust can form in the most primordial of systems.

"This is completely overthrowing models of dust formation and opening up a whole new way of studying the chemical enrichment of the very first galaxies."

Webb is an international programme led by NASA with its partners, the European Space Agency (ESA) and the Canadian Space Agency.

The UK is playing a major role by leading the European Consortium. The UK, partnered with US institutes, designed, built and tested one of the four main science instruments, the MIRI, backed by UK Government funding.
 

 

 

Advertisement
PTC PTC
UK and Sweden join the LOFAR ERIC

Space

UK and Sweden join the LOFAR ERIC

2 May 2025

The UK, along with Sweden, has joined the Low Frequency Array (LOFAR) radio telescope project - governed by the LOFAR European Research Infrastructure Consortium (ERIC) - as full members after many years as collaborative partners.

Fredo the Unstronaut launched

Space

Fredo the Unstronaut launched

2 May 2025

SaxaVord Spaceport has officially launched 'Fredo the Unstronaut' today, an animated character-driven educational initiative designed to inspire the next generation of space enthusiasts.

Shipley UK and Kahootz partner to enhance opportunity capture

Aerospace Defence Security Space

Shipley UK and Kahootz partner to enhance opportunity capture

1 May 2025

Kahootz and Shipley UK have announced a strategic partnership to enhance opportunity capture and bid management capabilities.

Semiconductor facility launches in Southampton

Aerospace Defence Security Space Events

Semiconductor facility launches in Southampton

1 May 2025

A new facility using cutting edge electron beam technology to build the next generation of semiconductor chips - and the first of its kind in Europe - was opened yesterday at the University of Southampton by Science Minister Lord Vallance.

Advertisement
DSEI 2025
BAE Systems and NEXT Semiconductor Technologies to advance space ready chips

Space

BAE Systems and NEXT Semiconductor Technologies to advance space ready chips

1 May 2025

NEXT Semiconductor Technologies is collaborating with BAE Systems to accelerate the insertion of its latest ultra-wideband antenna processor units (APUs) into high-performing radiation-hardened electronic subsystems to support future space missions.

British-built Biomass satellite launched

Space

British-built Biomass satellite launched

29 April 2025

The Biomass Earth observation satellite developed by British academics and engineers - set to become the first in the world to measure the condition of the Earth's forests in 3D from space - launched today.

Advertisement
DSEI 2025