Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • Reaction Engines' SABRE precooler passes first high-temperature testing

Space

Reaction Engines' SABRE precooler passes first high-temperature testing

A key element of Reaction Engines’ revolutionary SABRE air-breathing rocket engine has successfully passed the first phase of high-temperature testing.

Precooler technology will enable a wide variety of high-speed flight and advanced propulsion systems.

Reaction Engines’ precooler heat exchanger successfully achieved all test objectives in the first phase of high-temperature testing designed to directly replicate supersonic flight conditions and future tests are planned at even higher temperatures. 

Advertisement
Gulfstream RT

The precooler is a key element of Reaction Engines’ revolutionary SABRE engine and is a potential enabling technology for advanced propulsion systems and other commercial applications.

The ground-based tests saw Reaction Engines’ unique precooler successfully quench the 420°C (~788°F) intake airflow in less than 1/20th of a second. The intake temperature replicates thermal conditions corresponding to Mach 3.3 flight, or over three times the speed of sound. Mach 3.3 matches the speed record of the SR-71 Blackbird aircraft, the world’s fastest jet-engine powered aircraft produced to date and is over 50% faster than the cruising speed of Concorde.

In the recent tests, the compact precooler achieved all test objectives and achieved 1.5 MW of heat transfer, the equivalent to the energy demand of 1,000 homes; successfully cooling incoming air from a temperature at which hot steel starts to glow. The tests are the first phase in an extensive test programme which will see the precooler test article (HTX) exposed to high-temperature airflow conditions in excess of the 1,000°C (~1800°F) expected during Mach 5 hypersonic flight.

The significant testing milestone occurred at Reaction Engines’ recently commissioned TF2 test facility located at the Colorado Air and Space Port, US. The TF2 test facility has been constructed by Reaction Engines to undertake ground based ‘hot’ testing of its precooler technology. The technology has already passed an extensive range of tests in the UK where its performance was fully validated at ambient air temperatures.

Advertisement
Teledyne

Commenting, Mark Thomas, Chief Executive, Reaction Engines, said: “This is a hugely significant milestone which has seen Reaction Engines’ proprietary precooler technology achieve unparalleled heat transfer performance. The HTX test article met all test objectives and the successful initial tests highlight how our precooler delivers world-leading heat transfer capabilities at low weight and compact size. This provides an important validation of our heat exchanger and thermal management technology portfolio which has application across emerging areas such as very high-speed flight, hybrid electric aviation and integrated vehicle thermal management.”

To replicate the conditions the precooler will experience at hypersonic speeds, the TF2 test facility uses a General Electric J79 turbojet engine formerly used in a McDonnell Douglas F-4 Phantom aircraft to provide high-temperature airflow. Engineers at Reaction Engines’ Culham headquarters constructed the HTX precooler test article and after initial testing it was shipped to Colorado at the end of 2018, and ‘hot’ tests commenced in early March 2019.

In addition to the hot precooler tests being conducted in the US, Reaction Engines is in the final stage of constructing its TF1 test facility at Westcott, Buckinghamshire, UK, where it will undertake ground-based testing of a SABRE engine core.  Over the last four years Reaction Engines has raised over £100m from public and private sources and has secured investment from BAE Systems, Rolls-Royce and Boeing HorizonX.

 

Advertisement
General Atomics LB
Serco appoints Keith Williams as Chair

Aerospace Defence Security Space

Serco appoints Keith Williams as Chair

4 July 2025

Serco has appointed Keith Williams to the Board as a Non-Executive Director and Chair designate.

UK launches tender for space debris removal

Space

UK launches tender for space debris removal

3 July 2025

The UK Space Agency has launched a major new procurement process to tackle the growing threat of space debris, initiating a £75.6 million tender for the nation’s first mission to actively remove defunct satellites from orbit.

Boeing appoints Stephen Parker as CEO of BDS

Defence Security Space

Boeing appoints Stephen Parker as CEO of BDS

3 July 2025

Boeing has appointed Stephen (Steve) Parker as president and chief executive officer of its Defense, Space & Security (BDS) business, effective immediately.

UK students to launch international space mission

Space

UK students to launch international space mission

3 July 2025

A team of students from the University of Surrey, the University of Portsmouth and the University of Southampton are working to fit equipment they designed, made and tested to a suborbital launch vehicle which aims to launch 900km into space.

Advertisement
Gulfstream RT
Airbus-built Sentinel-4 launched onboard MTG weather satellite

Space

Airbus-built Sentinel-4 launched onboard MTG weather satellite

2 July 2025

The European Space Agency (ESA) and its partners have confirmed the successful launch of the Airbus-built Sentinel-4, a cutting-edge air quality monitoring instrument hosted on the third generation Meteosat (MTG-S1) weather satellite.

Teledyne CIS120 sensors launch on GOSAT-GW

Space

Teledyne CIS120 sensors launch on GOSAT-GW

1 July 2025

Teledyne Technologies Incorporated, a provider of advanced imaging solutions, has confirmed that two CIS120 sensors designed and manufactured by Teledyne Space Imaging will play a major part in the third in a series of Japanese climate change and Earth observation satellite missions.

Advertisement
Teledyne