Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • Space reflectors could enhance solar farms

Space

Space reflectors could enhance solar farms

Reflectors placed in orbit around the Earth which reflect sunlight towards future solar power farms at dawn and dusk could help accelerate the transition to net-zero, according to University of Glasgow researchers.

Space engineers from the University of Glasgow have published new research showing how kilometre-wide orbiting reflectors could boost the output of future large-scale solar farms by reflecting additional sunlight towards them even after the sun has set.

Image by Dotted Yeti / copyright Shutterstock

In a paper published as a preprint in the journal Acta Astronautica, the researchers describe how they used sophisticated computer simulations to help determine the most effective method of using orbiting solar reflectors to generate additional power.

Advertisement
Security & Policing Rectangle

Their models showed that putting 20 gossamer-thin reflectors into orbit 1000 kilometres from the surface of the Earth could reflect sunlight to solar farms for an extra two hours each day on average. The additional sunlight could boost the output of the world’s future solar farms, particularly after sunset when electricity demand is high. The output could be scaled up further by adding more reflectors or increasing their size.

The reflectors would maintain an orbit close to the Earth’s terminator line – the boundary where daylight on one side of the planet transitions into night on the other – in an arrangement known as a Walker constellation.

Walker constellations are widely used in technologies like satellite communication systems, where groups of equally-spaced satellites form rings around the planet to ensure consistent communication with the Earth’s surface.

The team developed an algorithm to determine how the reflectors could be arranged in the constellation and angled to catch the sun’s rays most effectively, maximising the additional sunlight reflected to solar power farms around the Earth in the early morning and late evening.

The researchers suggest that the 20 reflectors could generate an extra 728 megawatt-hours (MWh) of electricity per day – the equivalent of adding an additional large-scale solar power farm to Earth without the associated cost of construction.

Dr Onur Çelik, from the University of Glasgow’s James Watt School of Engineering, is the corresponding author of the paper. He said: “Solar power has the potential to be one of the key accelerators in our race to reach net-zero, helping us to mitigate the global impacts of climate change by reducing our reliance on fossil fuels.

“The price of solar panels has dropped quickly in recent years, increasing the pace of their adoption and paving the way for the creation of large-scale solar power farms around the world.

“One of the major limitations of solar power, of course, is that it can only be generated during daylight hours. Putting orbiting solar reflectors in place around the Earth would help to maximise the effectiveness of solar farms in the years to come. Strategically placing new solar farms in locations which receive the most additional sunlight from the reflectors could make them even more effective.”

The paper is one of the outputs from SOLSPACE, a University of Glasgow-led research project supported by €2.5 million (£2.1m) in funding from the European Research Council.

Professor Colin McInnes is SOLSPACE’s principal investigator and is a co-author of the paper. He said: “The idea of orbiting solar reflectors isn’t new – in fact, it predates even the space age, as the idea of illuminating cities with light from space was first discussed in the late 1920s.

“However, space reflectors have only been demonstrated once back in the early 90s, when a 20-metre aluminium-foil reflector was released from the Russian Mir space station to reflect sunlight back to Earth.

“The SOLSPACE project is working to devise, develop and demonstrate ideas for orbital reflector technology that could work on a much more ambitious scale to deliver global clean energy services.

Advertisement
ODU RT

“Tackling the challenges of climate change requires big ideas. While this is undoubtedly a big idea, it builds on technologies that are already well-understood and computer models like ours show how they could be scaled up. In addition, the falling cost of launching payloads to space opens up entirely new possibilities for the future.”

The team’s paper, titled ‘A constellation design for orbiting solar reflectors to enhance terrestrial solar energy’, is published in Acta Astronautica. The research was supported by funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 883730).

 

 

 

 

 

Advertisement
Babcock LB Babcock LB
Farnborough International Airshow 2026 unveils new features

Aerospace Defence Security Space Events

Farnborough International Airshow 2026 unveils new features

22 January 2026

The Farnborough International Airshow 2026, returning from 20th to 24th July 2026, will be the largest and most ambitious event in its 78-year history, following record-breaking demand and the addition of a brand-new sixth exhibition hall

Thales Alenia Space signs with OHB for LISA propulsion subsystem

Space

Thales Alenia Space signs with OHB for LISA propulsion subsystem

22 January 2026

Thales Alenia Space, the joint venture between Thales (67%) and Leonardo (33%), has signed a €16.5 million contract with prime contractor OHB System AG to provide the Propulsion Subsystem for European Space Agency's LISA- mission

Study reveals potential role of biofilms on health in space

Space

Study reveals potential role of biofilms on health in space

22 January 2026

A new Perspective article published in npj Biofilms and Microbiomes sets out a path to uncover the role of biofilms in health during long-duration spaceflight and how spaceflight research can reshape our understanding of these microbial communities on Earth.

SatVu appoints Scott Herman as CTO

Defence Security Space

SatVu appoints Scott Herman as CTO

22 January 2026

UK based high resolution thermal intelligence company SatVu, that reveals operational activity and infrastructure performance from space, today announced the appointment of Scott Herman as Chief Technology Officer (CTO).

Advertisement
Security & Policing Rectangle
Teledyne detectors launched on NASA’s BlackCAT

Space

Teledyne detectors launched on NASA’s BlackCAT

21 January 2026

Teledyne Technologies' Space Imaging division has deployed its Speedster HyViSI (Hybrid Visible Silicon Imager) Focal Plane Arrays (FPAs) aboard NASA’s BlackCAT CubeSat Mission.

Westcott Space Hub opens to boost UK space innovation

Space

Westcott Space Hub opens to boost UK space innovation

20 January 2026

A new £20 million space innovation hub has officially opened in Buckinghamshire, supported by UK Space Agency funding, providing cutting-edge facilities to help space businesses grow and creating up to 300 jobs.

Advertisement
ODU RT
Advertisement
Babcock LB Babcock LB