in Features

When will electric aircraft really take off?

Posted 1 November 2019 · Add Comment

Sophie Hand, UK Country Manager at EU Automation, shares some recent developments in electric aircraft and discusses where the industry will go next.


Courtesy EU Automation

Concerns about emissions drove environmental campaigner Greta Thunberg to traverse the Atlantic Ocean via sea, rather than air. According to the EU, aviation is responsible for around 3% of all man-made carbon dioxide emissions and with air traffic growth expected to double over the next 20 years, the figure is only going to rise.
 
Every minute, 84 flights take off worldwide and, in 2018, more than four billion journeys were made by plane. While it is true that today’s aircraft are around 80 per cent more fuel efficient per passenger-kilometre than 50 years ago, air traffic is growing fast. As well as the environmental implications, there is another motivation for airlines to make the switch to electric — cost.
 
Airlines spend 25 to 50% of their costs on jet fuel — $180 billion a year in total — making the switch to electric a no brainer. From the passenger perspective, electric planes could mean cheaper tickets and quieter flights. According to Roland Berger consultancy, the number of electric aircraft in development increased 50% in 2018 to 170 and investment is only set to increase.
 
What’s next?

Despite all the hype surrounding electric flight, the industry is still far from achieving widespread electric commercial flight. Currently, electric flight is confined to small aircrafts travelling short distances. One of the major limitations is the weight of batteries — because they offer a much lower power to weight ratio than traditional jet-engines, they’re extremely heavy — and we all know how fussy airlines can be about weight.
 
By using innovative composite materials, it is possible to achieve weight savings of up to 70% on key components. Alternatively, by using metal 3D printing, which adds material only where it is needed and can produce lattice structures, manufacturers can reduce weight. Designing lighter, better planes, is part of the solution, but what we really need is higher battery energy density.
 
Who’s leading the way?
Aerospace companies large and small are working on electric aircraft. Airbus is working with Siemens and Rolls Royce to develop a hybrid electric airline demonstrator, which uses two electric motors and has a flight time of 60 minutes.
 
Another exciting project is Alice, unveiled at the 2019 Paris Air Show by Israeli company Eviation. Developed from 95% composite materials, the plane will be able to carry up to nine passengers up to 1,046 km, using one main pusher-propeller on its tail and one on each wing. The company is using Siemens and magniX to provide the electric motors.
 
Taking a slightly different approach, start-up Ampaire is developing a retrofitted electric aircraft, which it aims to have FAA certified by the end of 2020. Its range will be 100 miles and it will be able to carry seven to nine passengers.
 
At this point, short to medium range electric flight seems achievable and is on the horizon. This will make a difference — Roei Ganzarski of magniX says that two billion air tickets are sold each year for flights under 500 miles. However, according to the Air Transport Action Group, around 80% of the carbon dioxide emissions from aviation come from flights over 1,500 km, so there is a long way to go.
 
It seems likely that hybrid aircraft will be the next step for the industry, rather than fully electric planes. Hybrids could plug the gap until the technological requirements for electric aircraft have been met, as these craft will save on fuel, while still retaining many of the performance benefits of the modern gas turbine or propeller-based engines.
 
Further developments in battery technology and in aircraft design are necessary for electric aircraft to truly take off. Until then, environmentalists may have to travel by boat. Environmentally savvy manufacturers looking to make their processes greener, could opt for a refurbished or remanufactured automation component, to save on new parts and reduce components in landfill.




 

Other Stories
Advertisement
Latest News

Rolls-Royce to supply mtu NautIQ Master for German F126 frigates

Rolls-Royce business unit Power Systems, headquartered in Friedrichshafen, Germany, will deliver the automation solutions (in German FüSAS Ė Führungssystem Automation Schiffstechnik) for the four new F126 frigates

INVISIO enters five year agreement for advanced RA4000 Magna headset

INVISIO has entered into a five year framework agreement - where the end-customer is the Armed Forces of a European country - with the system integrator of the end-customerís vehicle modernisation programme utlising Racal Acousticsí

Bell Boeing enhance V-22 maintainability

Bell has completed the first Nacelle Improvements Modification on an Air Force CV-22 Osprey, as part of an ongoing upgrade by Bell and Boeing to improve the wiring components within the nacelles and to change the structure in order to

Fractory launches instant quoting for CNC Machining

UK-based Fractory has launched automated quotes for CNC turning and milling, which is a significant addition to the platform that numerous companies of all sizes can benefit from.

DragonFly adds jet to its fleet of turboprops

Executive air charter company based at Cardiff Airport, DragonFly, has added a Cessna Citation C550 Bravo jet to its existing fleet of three King Air turboprops

NCSC urges UK organisations to bolster cyber security resilience

The National Cyber Security Centre (NCSC) has today urged UK organisations to bolster their cyber security resilience in response to the malicious cyber incidents in and around Ukraine.

ODU SK2401311222
See us at