Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • Worms on a mission to research muscle loss in space

Space

Worms on a mission to research muscle loss in space

Today, hundreds of tiny worms are being flown to the International Space Station (ISS) as part of an experiment to understand more about human muscle loss and how to prevent it.

Image courtesy UK Space Agency / Beata Science Art

Led by scientists from Nottingham and Exeter University, with hardware designed by Oxford-based Kayser Space, a research team aims to determine the causes of muscle changes during spaceflight and find ways to mitigate these biological changes.

Discovering more about muscle loss in space will expand our understanding of how ageing affects our muscles; this could lead to more effective therapies and new treatments for muscular dystrophies here on Earth.

Advertisement
Security & Policing Rectangle

Science Minister Amanda Solloway said: "Experiments in space push the frontiers of knowledge and provide real-life benefits for the rest of us back on Earth.

"It is astonishing to think that sending worms into space could improve our health and help us lead longer lives, and I am thrilled that UK researchers are leading this effort."

The worms, C. elegans, share many of the essential biological characteristics of humans and are affected by biological changes in space, including alterations to muscle and the ability to use energy.

The research will build on an experiment from 2018 and will test new molecular causes of, and potential therapies for muscle loss during spaceflight.

Dr Bethan Philips, Associate Professor of Clinical, Metabolic and Molecular Physiology, at the School of Medicine at the University of Nottingham, said: "Since the dawn of the space age, there have been concerns that space travel can be harmful to astronauts. We are very excited that this latest mission will enable us to build on the work we have already done to not only further explore what causes muscle loss with spaceflight, but to also look at how to prevent it. This work will have implications not only for astronauts but also for many situations on Earth.

Dr Tim Etheridge, Associate Professor at the University of Exeter, said: "The experiment will give us even more new information on the molecules that cause muscle decline in space, and whether targeting these with novel drugs and interventions can help. This information can then build the foundations for safely sending humans on long-term missions into deep space."

Kayser Space, based in Oxfordshire, has developed the hardware for the experiment. The worms will be housed in culture bags inside 24 matchbox-sized experiment containers, each containing three culture bags. Once on board the ISS, these containers will be placed into the incubator in the station’s Columbus Module. The experiment will take place over 5-6 days.

Advertisement
ODU RT

David Zolesi - Kayser Space Managing Director, said: "This launch is the second of a series of three life science payloads developed by Kayser Space to fly to the ISS within three years. It is an important achievement that will help Kayser to bolster its position as a leading partner to the UK scientific community for implementing experiments in space."

The experiment is due to launch to the ISS on the SpX-22, a Commercial Resupply Service mission contracted by NASA and flown by SpaceX using a Cargo Dragon 2 from the Kennedy Space Center in Florida.
 

 

 

Advertisement
General Atomics LB
Oxford Space Systems

Space

Oxford Space Systems' Wrapped Rib Antenna deployed on SSTL’s CarbSAR

29 January 2026

Surrey Satellite Technology Limited (SSTL) and Oxford Space Systems announced today the successful in-orbit deployment of Oxford Space Systems’ Wrapped Rib Antenna on SSTL’s CarbSAR In-Orbit Demonstration mission.

Funding of £20m set to find Britain’s next defence unicorn

Aerospace Defence Security Space Events

Funding of £20m set to find Britain’s next defence unicorn

29 January 2026

The search for the UK’s next defence unicorn has kicked off with the launch of a bespoke £20 million fund to offer accelerated contracts to small, innovative British startups who have had limited or no business with the Ministry of Defence.

Farnborough International Airshow 2026 unveils new features

Aerospace Defence Security Space Events

Farnborough International Airshow 2026 unveils new features

22 January 2026

The Farnborough International Airshow 2026, returning from 20th to 24th July, will be the largest and most ambitious event in its 78-year history, following record-breaking demand and the addition of a brand-new sixth exhibition hall.

Thales Alenia Space signs with OHB for LISA propulsion subsystem

Space

Thales Alenia Space signs with OHB for LISA propulsion subsystem

22 January 2026

Thales Alenia Space, the joint venture between Thales (67%) and Leonardo (33%), has signed a €16.5 million contract with prime contractor OHB System AG to provide the Propulsion Subsystem for European Space Agency's LISA- mission

Advertisement
ODU RT
Study reveals potential role of biofilms on health in space

Space

Study reveals potential role of biofilms on health in space

22 January 2026

A new Perspective article published in npj Biofilms and Microbiomes sets out a path to uncover the role of biofilms in health during long-duration spaceflight and how spaceflight research can reshape our understanding of these microbial communities on Earth.

SatVu appoints Scott Herman as CTO

Defence Security Space

SatVu appoints Scott Herman as CTO

22 January 2026

UK based high resolution thermal intelligence company SatVu, that reveals operational activity and infrastructure performance from space, today announced the appointment of Scott Herman as Chief Technology Officer (CTO).

Advertisement
Security & Policing Rectangle
Advertisement
Babcock LB Babcock LB