Advancing UK Aerospace, Defence, Security & Space Solutions Worldwide
  • Home
  • /
  • Space
  • /
  • Space Power developing first non-gov LASER powered beaming tech for space

Space

Space Power developing first non-gov LASER powered beaming tech for space

Space Power has signed up to the national SPRINT business support programme, enabling it to collaborate with the University of Surrey on a space infrastructure project to develop the first in-orbit laser-based power beaming demo outside of a governmental organisation by 2023, with full commercialisation by 2025.

Image courtesy Space Power

with the funding enabling it to collaborate with the University of Surrey on a space infrastructure project supporting the company’s plans to develop the first in-orbit laser-based power beaming demonstration outside of a governmental organisation by 2023, with full commercialisation by 2025.

Advertisement
Tritax 300x250

The SPRINT (SPace Research and Innovation Network for Technology) project follows on from an initial innovation voucher-funded feasibility study on laser transmission with the University of Surrey and will investigate and verify the efficiency benefits that can be gained compared to sunlight. The objectives are to develop the Technology Readiness Level (TRL) of the new technology, measure the advantages of lasers and sunlight and provide data to enable Space Power to design its prototype for small satellites in space.

Power demands are outstripping supplies as humanity finds more ambitious and useful tasks for CubeSats, driving operational efficiency below 5% of the total flight time – necessitating huge constellations of 100 satellites or more, just to keep up with demands for more data. This energy scarcity is creating an impending ecological disaster in-orbit and on the ground.

Wireless power beaming is a critical technology for the space infrastructure that will provide auxiliary power to increase the baseline efficiency of small satellites in Low Earth Orbit (LEO). The first Space Power product will be designed as a plug-and-play system for satellite manufacturers to include in their offering to their LEO constellation customers.

Professor Sweeney’s group at the Department of Physics and Advanced Technology Institute at the University of Surrey is a world leader in the development and implementation of laser and photovoltaic-based technologies. The group has developed highly specialised laser laboratories and optical systems that will be used to pursue the technical aspects of this project.

This project with the University of Surrey will be funded by the £7.4 million SPRINT programme. SPRINT provides unprecedented access to university space expertise and facilities. SPRINT helps businesses through the commercial exploitation of space data and technologies.

Keval Dattani, Director of Space Power said: “The SPRINT project is an important development from our feasibility study with the University of Surrey that enables us to approach customers with confidence and demonstrate the improved efficiencies available by using auxiliary power systems.

“By focusing on light optics and power beaming, we are looking to increase small satellite operating efficiencies by a factor of between 2X-5X. The project is expected to validate these claims and offer a development path towards tuned photovoltaics and laser systems for our customers to unlock their ambitious power requirements.

“There’s a desperate need for more power to deliver the data we need to help tackle climate change, ocean pollution and erosion and telecommunications – currently this is being done at the expense of putting up more, larger satellites than necessary and adding more and more layers of rare earth materials to their photovoltaics, only to seek out an extra five per cent of power. This strategy is unsustainable and only demands more from our limited resources on earth, especially against the backdrop of the exploding population of CubeSats in the next five years when we will also struggle with problems of orbital over-population and debris.

Advertisement
ODU RT

“We have seen the benefits of powering satellites using lasers which enables smaller satellites, simpler systems and fewer resources – whilst performing more work to help us understand our planet better. For us, this is a neat solution with long term benefits, not least for lunar outposts and asteroid mining but back here on earth too.”

Stephen Sweeney, Professor of Physics at the University of Surrey added: “The University of Surrey has a long track record in photonics and space research and brings unique expertise in both high power lasers and photovoltaics. We have many years of experience in optical wireless power and are delighted to work with Space Power to help develop such technologies for space-based applications.”

SPRINT is supported by Research England, the Scottish Funding Council and the UK Space Agency. It is being delivered by a consortium of the UK’s leading space universities, including founding members, led by the University of Leicester with the University of Edinburgh, The Open University, University of Southampton and University of Surrey. SPRINT Associate Member universities include the University of Exeter: University of Strathclyde; Kingston University; City, University of London; Durham University; University of Bristol; University of Glasgow and University of Leeds.

 

 


 

Advertisement
Babcock LB
Pulsar Fusion wins support from ESA

Space

Pulsar Fusion wins support from ESA

5 December 2025

Bletchley based Pulsar Fusion has won an 18 month contract from the European Space Agency (ESA) to advance its Hall-Effect Thruster technology in preparation for future space missions.

UK Space Agency invests £17m to drive space innovation

Space Events

UK Space Agency invests £17m to drive space innovation

4 December 2025

The UK Space Agency unveiled £17 million for 17 UK space projects through its National Space Innovation Programme (NSIP), at Space-Comm Expo in Glasgow.

British designed satellites successfully launched

Defence Security Space

British designed satellites successfully launched

3 December 2025

A cluster of British designed and built satellites has been successfully launched into low Earth orbit, providing defence, security and civil sectors with UK space-based intelligence, surveillance and reconnaissance to enhance the nation’s ability to protect against modern threats.

Filtronic awarded NSIP funding to develop 550W Ka-Band SSPA

Space

Filtronic awarded NSIP funding to develop 550W Ka-Band SSPA

3 December 2025

Filtronic has been awarded funding through the UK Space Agency National Space Innovation Programme (NSIP) to develop a high-power 550W Ka-Band Solid-State Power Amplifier (SSPA).

Advertisement
Leonardo animated rectangle
Scottish space sector secures UK Space Agency investment

Space Events

Scottish space sector secures UK Space Agency investment

3 December 2025

Scotland’s space sector will receive a major funding boost to accelerate breakthrough technologies and boost commercialisation, the UK Space Agency will announce today at Space-Comm Expo Scotland.

Airbus

Space

Airbus' ESM-4 ships out for Artemis IV

1 December 2025

Airbus' fourth European Service Module (ESM-4) has reached a major milestone, as it began its journey last week to NASA’s Kennedy Space Center in Florida, for Artemis IV.

Advertisement
Tritax 300x250